unet¶
-
class
src.unet.UNet(*args: Any, **kwargs: Any)¶ Simple PyTorch U-Net
Leaving all default parameters will create a U-Net as described in the original paper: “U-Net: Convolutional Networks for Biomedical Image Segmentation” (Ronneberger, et al.)
- Parameters
- in_channels: int, optional
Number C if input channels in a batch of
(N x C x H x W). Defaults to1corresponding to a standard black-and-white image.- out_channels: int, optional
Number C of output channels in a batch of
(N x C x H x W). Corresponds to the amount of classes that should be differentiated, e.g. C = 10 if you want to differentiate between 10 different segmentation classes. Defaults to2.- depth: int, optional
Depth of the U-Net. A depth of
5corresponds to the U-Net described in the original paper, i.e.5convolutional layers and4up-convolutional layers. Default is5.- start_features: int, optional
Number of initial features in the convolutional blocks. Features are doubled (or halved when up-convoluting) after every block. Default is
64.- up: str, optional
Mode of the up-convolution. May be either
'upsample'or'upconv'. Default is'upsample'.- padding: int, optional
Padding to be applied when convoluting. User must ensure validity. Default is
0.- verbose: bool, optional
Verbose mode. Whether or not to print debug information about the batch size after every convolution step. Useful for fixing image size and padding problems. Default is
False.
Methods
__call__(*args, **kwargs)Call self as a function.
forward